Papers
Topics
Authors
Recent
2000 character limit reached

Can Pre-trained Language Models Understand Chinese Humor? (2407.04105v1)

Published 4 Jul 2024 in cs.CL and cs.AI

Abstract: Humor understanding is an important and challenging research in natural language processing. As the popularity of pre-trained LLMs (PLMs), some recent work makes preliminary attempts to adopt PLMs for humor recognition and generation. However, these simple attempts do not substantially answer the question: {\em whether PLMs are capable of humor understanding?} This paper is the first work that systematically investigates the humor understanding ability of PLMs. For this purpose, a comprehensive framework with three evaluation steps and four evaluation tasks is designed. We also construct a comprehensive Chinese humor dataset, which can fully meet all the data requirements of the proposed evaluation framework. Our empirical study on the Chinese humor dataset yields some valuable observations, which are of great guiding value for future optimization of PLMs in humor understanding and generation.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: