Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Semantic Graphs for Syntactic Simplification: A Revisit from the Age of LLM (2407.04067v1)

Published 4 Jul 2024 in cs.CL

Abstract: Symbolic sentence meaning representations, such as AMR (Abstract Meaning Representation) provide expressive and structured semantic graphs that act as intermediates that simplify downstream NLP tasks. However, the instruction-following capability of LLMs offers a shortcut to effectively solve NLP tasks, questioning the utility of semantic graphs. Meanwhile, recent work has also shown the difficulty of using meaning representations merely as a helpful auxiliary for LLMs. We revisit the position of semantic graphs in syntactic simplification, the task of simplifying sentence structures while preserving their meaning, which requires semantic understanding, and evaluate it on a new complex and natural dataset. The AMR-based method that we propose, AMRS$3$, demonstrates that state-of-the-art meaning representations can lead to easy-to-implement simplification methods with competitive performance and unique advantages in cost, interpretability, and generalization. With AMRS$3$ as an anchor, we discover that syntactic simplification is a task where semantic graphs are helpful in LLM prompting. We propose AMRCoC prompting that guides LLMs to emulate graph algorithms for explicit symbolic reasoning on AMR graphs, and show its potential for improving LLM on semantic-centered tasks like syntactic simplification.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.