Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient optimization of ODE neuron models using gradient descent (2407.04025v2)

Published 4 Jul 2024 in q-bio.NC

Abstract: Neuroscientists fit morphologically and biophysically detailed neuron simulations to physiological data, often using evolutionary algorithms. However, such gradient-free approaches are computationally expensive, making convergence slow when neuron models have many parameters. Here we introduce a gradient-based algorithm using differentiable ODE solvers that scales well to high-dimensional problems. GPUs make parallel simulations fast and gradient calculations make optimization efficient. We verify the utility of our approach optimizing neuron models with active dendrites with heterogeneously distributed ion channel densities. We find that individually stimulating and recording all dendritic compartments makes such model parameters identifiable. Identification breaks down gracefully as fewer stimulation and recording sites are given. Differentiable neuron models, which should be added to popular neuron simulation packages, promise a new era of optimizable neuron models with many free parameters, a key feature of real neurons.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 11 likes.

Upgrade to Pro to view all of the tweets about this paper: