Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

LeDNet: Localization-enabled Deep Neural Network for Multi-Label Radiography Image Classification (2407.03931v1)

Published 4 Jul 2024 in eess.IV and cs.CV

Abstract: Multi-label radiography image classification has long been a topic of interest in neural networks research. In this paper, we intend to classify such images using convolution neural networks with novel localization techniques. We will use the chest x-ray images to detect thoracic diseases for this purpose. For accurate diagnosis, it is crucial to train the network with good quality images. But many chest X-ray images have irrelevant external objects like distractions created by faulty scans, electronic devices scanned next to lung region, scans inadvertently capturing bodily air etc. To address these, we propose a combination of localization and deep learning algorithms called LeDNet to predict thoracic diseases with higher accuracy. We identify and extract the lung region masks from chest x-ray images through localization. These masks are superimposed on the original X-ray images to create the mask overlay images. DenseNet-121 classification models are then used for feature selection to retrieve features of the entire chest X-ray images and the localized mask overlay images. These features are then used to predict disease classification. Our experiments involve comparing classification results obtained with original CheXpert images and mask overlay images. The comparison is demonstrated through accuracy and loss curve analyses.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: