Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ChatSOP: An SOP-Guided MCTS Planning Framework for Controllable LLM Dialogue Agents (2407.03884v3)

Published 4 Jul 2024 in cs.CL and cs.AI

Abstract: Dialogue agents powered by LLMs show superior performance in various tasks. Despite the better user understanding and human-like responses, their lack of controllability remains a key challenge, often leading to unfocused conversations or task failure. To address this, we introduce Standard Operating Procedure (SOP) to regulate dialogue flow. Specifically, we propose ChatSOP, a novel SOP-guided Monte Carlo Tree Search (MCTS) planning framework designed to enhance the controllability of LLM-driven dialogue agents. To enable this, we curate a dataset comprising SOP-annotated multi-scenario dialogues, generated using a semi-automated role-playing system with GPT-4o and validated through strict manual quality control. Additionally, we propose a novel method that integrates Chain of Thought reasoning with supervised fine-tuning for SOP prediction and utilizes SOP-guided Monte Carlo Tree Search for optimal action planning during dialogues. Experimental results demonstrate the effectiveness of our method, such as achieving a 27.95% improvement in action accuracy compared to baseline models based on GPT-3.5 and also showing notable gains for open-source models. Dataset and codes are publicly available.

Summary

We haven't generated a summary for this paper yet.