Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Adversarial Robustness of VAEs across Intersectional Subgroups (2407.03864v2)

Published 4 Jul 2024 in cs.LG and cs.AI

Abstract: Despite advancements in Autoencoders (AEs) for tasks like dimensionality reduction, representation learning and data generation, they remain vulnerable to adversarial attacks. Variational Autoencoders (VAEs), with their probabilistic approach to disentangling latent spaces, show stronger resistance to such perturbations compared to deterministic AEs; however, their resilience against adversarial inputs is still a concern. This study evaluates the robustness of VAEs against non-targeted adversarial attacks by optimizing minimal sample-specific perturbations to cause maximal damage across diverse demographic subgroups (combinations of age and gender). We investigate two questions: whether there are robustness disparities among subgroups, and what factors contribute to these disparities, such as data scarcity and representation entanglement. Our findings reveal that robustness disparities exist but are not always correlated with the size of the subgroup. By using downstream gender and age classifiers and examining latent embeddings, we highlight the vulnerability of subgroups like older women, who are prone to misclassification due to adversarial perturbations pushing their representations toward those of other subgroups.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.