Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-latency machine learning FPGA accelerator for multi-qubit-state discrimination (2407.03852v2)

Published 4 Jul 2024 in quant-ph, cs.AR, and cs.LG

Abstract: Measuring a qubit state is a fundamental yet error-prone operation in quantum computing. These errors can arise from various sources, such as crosstalk, spontaneous state transitions, and excitations caused by the readout pulse. Here, we utilize an integrated approach to deploy neural networks onto field-programmable gate arrays (FPGA). We demonstrate that implementing a fully connected neural network accelerator for multi-qubit readout is advantageous, balancing computational complexity with low latency requirements without significant loss in accuracy. The neural network is implemented by quantizing weights, activation functions, and inputs. The hardware accelerator performs frequency-multiplexed readout of five superconducting qubits in less than 50 ns on a radio frequency system on chip (RFSoC) ZCU111 FPGA, marking the advent of RFSoC-based low-latency multi-qubit readout using neural networks. These modules can be implemented and integrated into existing quantum control and readout platforms, making the RFSoC ZCU111 ready for experimental deployment.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com