Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Implicit Hypersurface Approximation Capacity in Deep ReLU Networks (2407.03851v1)

Published 4 Jul 2024 in cs.LG

Abstract: We develop a geometric approximation theory for deep feed-forward neural networks with ReLU activations. Given a $d$-dimensional hypersurface in $\mathbb{R}{d+1}$ represented as the graph of a $C2$-function $\phi$, we show that a deep fully-connected ReLU network of width $d+1$ can implicitly construct an approximation as its zero contour with a precision bound depending on the number of layers. This result is directly applicable to the binary classification setting where the sign of the network is trained as a classifier, with the network's zero contour as a decision boundary. Our proof is constructive and relies on the geometrical structure of ReLU layers provided in [doi:10.48550/arXiv.2310.03482]. Inspired by this geometrical description, we define a new equivalent network architecture that is easier to interpret geometrically, where the action of each hidden layer is a projection onto a polyhedral cone derived from the layer's parameters. By repeatedly adding such layers, with parameters chosen such that we project small parts of the graph of $\phi$ from the outside in, we, in a controlled way, construct a network that implicitly approximates the graph over a ball of radius $R$. The accuracy of this construction is controlled by a discretization parameter $\delta$ and we show that the tolerance in the resulting error bound scales as $(d-1)R{3/2}\delta{1/2}$ and the required number of layers is of order $d\big(\frac{32R}{\delta}\big){\frac{d+1}{2}}$.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets