Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Quantum spectral method for gradient and Hessian estimation (2407.03833v1)

Published 4 Jul 2024 in quant-ph and cs.DS

Abstract: Gradient descent is one of the most basic algorithms for solving continuous optimization problems. In [Jordan, PRL, 95(5):050501, 2005], Jordan proposed the first quantum algorithm for estimating gradients of functions close to linear, with exponential speedup in the black-box model. This quantum algorithm was greatly enhanced and developed by [Gily\'en, Arunachalam, and Wiebe, SODA, pp. 1425-1444, 2019], providing a quantum algorithm with optimal query complexity $\widetilde{\Theta}(\sqrt{d}/\varepsilon)$ for a class of smooth functions of $d$ variables, where $\varepsilon$ is the accuracy. This is quadratically faster than classical algorithms for the same problem. In this work, we continue this research by proposing a new quantum algorithm for another class of functions, namely, analytic functions $f(\boldsymbol{x})$ which are well-defined over the complex field. Given phase oracles to query the real and imaginary parts of $f(\boldsymbol{x})$ respectively, we propose a quantum algorithm that returns an $\varepsilon$-approximation of its gradient with query complexity $\widetilde{O}(1/\varepsilon)$. This achieves exponential speedup over classical algorithms in terms of the dimension $d$. As an extension, we also propose two quantum algorithms for Hessian estimation, aiming to improve quantum analogs of Newton's method. The two algorithms have query complexity $\widetilde{O}(d/\varepsilon)$ and $\widetilde{O}(d{1.5}/\varepsilon)$, respectively, under different assumptions. Moreover, if the Hessian is promised to be $s$-sparse, we then have two new quantum algorithms with query complexity $\widetilde{O}(s/\varepsilon)$ and $\widetilde{O}(sd/\varepsilon)$, respectively. The former achieves exponential speedup over classical algorithms. We also prove a lower bound of $\widetilde{\Omega}(d)$ for Hessian estimation in the general case.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube