Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Exploring Algorithmic Solutions for the Independent Roman Domination Problem in Graphs (2407.03831v2)

Published 4 Jul 2024 in math.CO and cs.DM

Abstract: Given a graph $G=(V,E)$, a function $f:V\to {0,1,2}$ is said to be a \emph{Roman Dominating function} if for every $v\in V$ with $f(v)=0$, there exists a vertex $u\in N(v)$ such that $f(u)=2$. A Roman Dominating function $f$ is said to be an \emph{Independent Roman Dominating function} (or IRDF), if $V_1\cup V_2$ forms an independent set, where $V_i={v\in V~\vert~f(v)=i}$, for $i\in {0,1,2}$. The total weight of $f$ is equal to $\sum_{v\in V} f(v)$, and is denoted as $w(f)$. The \emph{Independent Roman Domination Number} of $G$, denoted by $i_R(G)$, is defined as min${w(f)~\vert~f$ is an IRDF of $G}$. For a given graph $G$, the problem of computing $i_R(G)$ is defined as the \emph{Minimum Independent Roman Domination problem}. The problem is already known to be NP-hard for bipartite graphs. In this paper, we further study the algorithmic complexity of the problem. In this paper, we propose a polynomial-time algorithm to solve the Minimum Independent Roman Domination problem for distance-hereditary graphs, split graphs, and $P_4$-sparse graphs.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.