Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Self-supervised Pre-training using Accent-Specific Codebooks (2407.03734v1)

Published 4 Jul 2024 in cs.CL, cs.AI, cs.LG, cs.SD, and eess.AS

Abstract: Speech accents present a serious challenge to the performance of state-of-the-art end-to-end Automatic Speech Recognition (ASR) systems. Even with self-supervised learning and pre-training of ASR models, accent invariance is seldom achieved. In this work, we propose an accent-aware adaptation technique for self-supervised learning that introduces a trainable set of accent-specific codebooks to the self-supervised architecture. These learnable codebooks enable the model to capture accent specific information during pre-training, that is further refined during ASR finetuning. On the Mozilla Common Voice dataset, our proposed approach outperforms all other accent-adaptation approaches on both seen and unseen English accents, with up to 9% relative reduction in word error rate (WER).

Summary

We haven't generated a summary for this paper yet.