Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 89 tok/s
Gemini 3.0 Pro 56 tok/s
Gemini 2.5 Flash 158 tok/s Pro
Kimi K2 198 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improving Self-supervised Pre-training using Accent-Specific Codebooks (2407.03734v1)

Published 4 Jul 2024 in cs.CL, cs.AI, cs.LG, cs.SD, and eess.AS

Abstract: Speech accents present a serious challenge to the performance of state-of-the-art end-to-end Automatic Speech Recognition (ASR) systems. Even with self-supervised learning and pre-training of ASR models, accent invariance is seldom achieved. In this work, we propose an accent-aware adaptation technique for self-supervised learning that introduces a trainable set of accent-specific codebooks to the self-supervised architecture. These learnable codebooks enable the model to capture accent specific information during pre-training, that is further refined during ASR finetuning. On the Mozilla Common Voice dataset, our proposed approach outperforms all other accent-adaptation approaches on both seen and unseen English accents, with up to 9% relative reduction in word error rate (WER).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.