Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

WANCO: Weak Adversarial Networks for Constrained Optimization problems (2407.03647v1)

Published 4 Jul 2024 in math.OC and cs.AI

Abstract: This paper focuses on integrating the networks and adversarial training into constrained optimization problems to develop a framework algorithm for constrained optimization problems. For such problems, we first transform them into minimax problems using the augmented Lagrangian method and then use two (or several) deep neural networks(DNNs) to represent the primal and dual variables respectively. The parameters in the neural networks are then trained by an adversarial process. The proposed architecture is relatively insensitive to the scale of values of different constraints when compared to penalty based deep learning methods. Through this type of training, the constraints are imposed better based on the augmented Lagrangian multipliers. Extensive examples for optimization problems with scalar constraints, nonlinear constraints, partial differential equation constraints, and inequality constraints are considered to show the capability and robustness of the proposed method, with applications ranging from Ginzburg--Landau energy minimization problems, partition problems, fluid-solid topology optimization, to obstacle problems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube