Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decomposition of Difficulties in Complex Optimization Problems Using a Bilevel Approach (2407.03454v1)

Published 3 Jul 2024 in cs.NE and math.OC

Abstract: Practical optimization problems may contain different kinds of difficulties that are often not tractable if one relies on a particular optimization method. Different optimization approaches offer different strengths that are good at tackling one or more difficulty in an optimization problem. For instance, evolutionary algorithms have a niche in handling complexities like discontinuity, non-differentiability, discreteness and non-convexity. However, evolutionary algorithms may get computationally expensive for mathematically well behaved problems with large number of variables for which classical mathematical programming approaches are better suited. In this paper, we demonstrate a decomposition strategy that allows us to synergistically apply two complementary approaches at the same time on a complex optimization problem. Evolutionary algorithms are useful in this context as their flexibility makes pairing with other solution approaches easy. The decomposition idea is a special case of bilevel optimization that separates the difficulties into two levels and assigns different approaches at each level that is better equipped at handling them. We demonstrate the benefits of the proposed decomposition idea on a wide range of test problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. Springer, 1984.
  2. Springer, 2010.
  3. H. A. Eiselt and C.-L. Sandblom, Linear programming and its applications. Springer Science & Business Media, 2007.
  4. J. Brownlee, Clever algorithms: nature-inspired programming recipes. Jason Brownlee, 2011.
  5. A. Sinha, P. Malo, and K. Deb, “A review on bilevel optimization: From classical to evolutionary approaches and applications,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 2, pp. 276–295, 2018.
  6. S. Dempe, Foundations of Bilevel Programming. Secaucus, NJ, USA: Kluwer Academic Publishers, 2002.
  7. J. Bracken and J. McGill, “Mathematical programs with optimization problems in the constraints,” Operations Research, vol. 21, pp. 37–44, 1973.
  8. S. Ruuska, K. Miettinen, and M. M. Wiecek, “Connections between single-level and bilevel multiobjective optimization,” Journal of Optimization Theory and Applications, vol. 153, pp. 60 – 74, 2011.
  9. R. Mathieu, L. Pittard, and G. Anandalingam, “Genetic algorithm based approach to bi-level linear programming,” Operations Research, vol. 28, no. 1, pp. 1–21, 1994.
  10. H. Li, “A genetic algorithm using a finite search space for solving nonlinear/linear fractional bilevel programming problems,” Annals of Operations Research, pp. 1–16, 2015.
  11. A. Sinha, P. Malo, A. Frantsev, and K. Deb, “Finding optimal strategies in a multi-period multi-leader-follower stackelberg game using an evolutionary algorithm,” Computers & Operations Research, vol. 41, pp. 374–385, 2014.
  12. J. Angelo, E. Krempser, and H. Barbosa, “Differential evolution for bilevel programming,” in IEEE congress on evolutionary computation(CEC), pp. 70–477, 2013.
  13. H. K. Singh, M. M. Islam, T. Ray, and M. Ryan, “Nested evolutionary algorithms for computationally expensive bilevel optimization problems: Variants and their systematic analysis,” Swarm and Evolutionary Computation, vol. 48, pp. 329–344, 2019.
  14. A. Sinha, P. Malo, and K. Deb, “Evolutionary algorithm for bilevel optimization using approximations of the lower level optimal solution mapping,” European Journal of Operational Research, vol. 257, no. 2, pp. 395–411, 2017.
  15. J. S. Angelo, E. Krempser, and H. J. C. Barbosa, “Differential evolution assisted by a surrogate model for bilevel programming problems,” in IEEE Congress on Evolutionary Computation (CEC), pp. 1784–1791, 2014.
  16. A. Sinha, Z. Lu, K. Deb, and P. Malo, “Bilevel optimization based on iterative approximation of multiple mappings,” Journal of Heuristics, vol. 26, no. 2, pp. 151–185, 2020.
  17. A. Sinha and V. Shaikh, “Solving bilevel optimization problems using kriging approximations,” IEEE Transactions on Cybernetics, vol. 52, no. 10, pp. 10639–10654, 2021.
  18. M. M. Islam, H. K. Singh, T. Ray, and A. Sinha, “An enhanced memetic algorithm for single-objective bilevel optimization problems,” Evolutionary Computation, vol. 25, no. 4, pp. 607–642, 2017.
  19. B. Wang, H. K. Singh, and T. Ray, “Investigating neighborhood solution transfer schemes for bilevel optimization,” in IEEE Congress on Evolutionary Computation (CEC), pp. 1–8, 2022.
  20. L. Chen, H.-L. Liu, K. C. Tan, and K. Li, “Transfer learning-based parallel evolutionary algorithm framework for bilevel optimization,” IEEE Transactions on Evolutionary Computation, vol. 26, no. 1, pp. 115–129, 2021.
  21. M. M. Islam, H. K. Singh, and T. Ray, “A surrogate assisted approach for single-objective bilevel optimization,” IEEE Transactions on Evolutionary Computation, vol. 21, no. 5, pp. 681–696, 2017.
  22. J. S. Angelo, E. Krempser, and H. J. Barbosa, “Performance evaluation of local surrogate models in bilevel optimization,” in International Conference on Machine Learning, Optimization, and Data Science (LOD), pp. 347–359, 2019.
  23. M. M. Islam, H. K. Singh, and T. Ray, “Efficient global optimization for solving computationally expensive bilevel optimization problems,” in IEEE congress on evolutionary computation (CEC), pp. 1–8, 2018.
  24. G. Stephanopoulos and A. W. Westerberg, “The use of hestenes’ method of multipliers to resolve dual gaps in engineering system optimization,” Journal of Optimization Theory and Applications, vol. 15, pp. 285–309, 1975.
  25. J. J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. N. Suganthan, C. A. C. Coello, and K. Deb, “Problem definitions and evaluation criteria for the cec 2006 special session on constrained real-parameter optimization,” tech. rep., 2006.
  26. C. A. Floudas and P. M. Pardalos, A collection of test problems for constrained global optimization algorithms. Springer, 1990.
  27. K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test problems for evolutionary multiobjective optimization,” in Evolutionary multiobjective optimization: theoretical advances and applications, pp. 105–145, Springer, 2005.
  28. S. Huband, P. Hingston, L. Barone, and L. While, “A review of multiobjective test problems and a scalable test problem toolkit,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 5, pp. 477–506, 2006.
  29. A. Sinha, P. Malo, and K. Deb, “Test problem construction for single-objective bilevel optimization,” Evolutionary computation, vol. 22, no. 3, pp. 439–477, 2014.
  30. John wiley & sons, 2013.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ankur Sinha (20 papers)
  2. Dhaval Pujara (1 paper)
  3. Hemant Kumar Singh (12 papers)

Summary

We haven't generated a summary for this paper yet.