Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recursive construction of biorthogonal polynomials for handling polynomial regression (2407.03349v1)

Published 8 Jun 2024 in math.NA and cs.NA

Abstract: An adaptive procedure for constructing a series of biorthogonal polynomials to a basis of monomials spanning the same finite-dimensional inner product space is proposed. By taking advantage of the orthogonality of the original basis, our procedure circumvents the well-known instability problem arising from the matrix inversion involved in classical polynomial regression. Moreover, the recurrent generation of biorthogonal polynomials in our framework facilitates the upgrading of all polynomials to include one additional element in the set whilst also allowing for a natural downgrading of the polynomial regression approximation. This is achieved by the posterior removal of any basis element leading to a straightforward approach for reducing the approximation order. We illustrate the usefulness of this approach through a series of examples where we derive the resulting biorthogonal polynomials from Legendre, Laguerre, and Chebyshev orthogonal bases.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com