Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Large Language Models for JSON Schema Discovery (2407.03286v1)

Published 3 Jul 2024 in cs.DB

Abstract: Semi-structured data formats such as JSON have proved to be useful data models for applications that require flexibility in the format of data stored. However, JSON data often come without the schemas that are typically available with relational data. This has resulted in a number of tools for discovering schemas from a collection of data. Although such tools can be useful, existing approaches focus on the syntax of documents and ignore semantic information. In this work, we explore the automatic addition of meaningful semantic information to discovered schemas similar to information that is added by human schema authors. We leverage LLMs and a corpus of manually authored JSON Schema documents to generate natural language descriptions of schema elements, meaningful names for reusable definitions, and identify which discovered properties are most useful and which can be considered "noise". Our approach performs well on existing metrics for text generation that have been previously shown to correlate well with human judgement.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)