Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Warm-up Free Policy Optimization: Improved Regret in Linear Markov Decision Processes (2407.03065v1)

Published 3 Jul 2024 in cs.LG and stat.ML

Abstract: Policy Optimization (PO) methods are among the most popular Reinforcement Learning (RL) algorithms in practice. Recently, Sherman et al. [2023a] proposed a PO-based algorithm with rate-optimal regret guarantees under the linear Markov Decision Process (MDP) model. However, their algorithm relies on a costly pure exploration warm-up phase that is hard to implement in practice. This paper eliminates this undesired warm-up phase, replacing it with a simple and efficient contraction mechanism. Our PO algorithm achieves rate-optimal regret with improved dependence on the other parameters of the problem (horizon and function approximation dimension) in two fundamental settings: adversarial losses with full-information feedback and stochastic losses with bandit feedback.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Youtube Logo Streamline Icon: https://streamlinehq.com