Papers
Topics
Authors
Recent
2000 character limit reached

Mast Kalandar at SemEval-2024 Task 8: On the Trail of Textual Origins: RoBERTa-BiLSTM Approach to Detect AI-Generated Text (2407.02978v1)

Published 3 Jul 2024 in cs.CL and cs.AI

Abstract: LLMs have showcased impressive abilities in generating fluent responses to diverse user queries. However, concerns regarding the potential misuse of such texts in journalism, educational, and academic contexts have surfaced. SemEval 2024 introduces the task of Multigenerator, Multidomain, and Multilingual Black-Box Machine-Generated Text Detection, aiming to develop automated systems for identifying machine-generated text and detecting potential misuse. In this paper, we i) propose a RoBERTa-BiLSTM based classifier designed to classify text into two categories: AI-generated or human ii) conduct a comparative study of our model with baseline approaches to evaluate its effectiveness. This paper contributes to the advancement of automatic text detection systems in addressing the challenges posed by machine-generated text misuse. Our architecture ranked 46th on the official leaderboard with an accuracy of 80.83 among 125.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: