Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Finding Spanning Trees with Perfect Matchings (2407.02958v2)

Published 3 Jul 2024 in cs.DS and math.CO

Abstract: We investigate the tractability of a simple fusion of two fundamental structures on graphs, a spanning tree and a perfect matching. Specifically, we consider the following problem: given an edge-weighted graph, find a minimum-weight spanning tree among those containing a perfect matching. On the positive side, we design a simple greedy algorithm for the case when the graph is complete (or complete bipartite) and the edge weights take at most two values. On the negative side, the problem is NP-hard even when the graph is complete (or complete bipartite) and the edge weights take at most three values, or when the graph is cubic, planar, and bipartite and the edge weights take at most two values. We also consider an interesting variant. We call a tree strongly balanced if on one side of the bipartition of the vertex set with respect to the tree, all but one of the vertices have degree $2$ and the remaining one is a leaf. This property is a sufficient condition for a tree to have a perfect matching, which enjoys an additional property. When the underlying graph is bipartite, strongly balanced spanning trees can be written as matroid intersection, and this fact was recently utilized to design an approximation algorithm for some kind of connectivity augmentation problem. The natural question is its tractability in nonbipartite graphs. As a negative answer, it turns out NP-hard to test whether a given graph has a strongly balanced spanning tree or not even when the graph is subcubic and planar.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube