Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

LiDAR-Inertial Odometry Based on Extended Kalman Filter (2407.02786v2)

Published 3 Jul 2024 in cs.RO

Abstract: LiDAR-Inertial Odometry (LIO) is typically implemented using an optimization-based approach, with the factor graph often being employed due to its capability to seamlessly integrate residuals from both LiDAR and IMU measurements. Conversely, a recent study has demonstrated that accurate LIO can also be achieved using a loosely-coupled method. Inspired by this advancements, we present a LIO method that leverages the recursive Bayes filter, solved via the Extended Kalman Filter (EKF) - herein referred to as KLIO. Within KLIO, prior and likelihood distributions are computed using IMU preintegration and scan matching between LiDAR and local map point clouds, and the pose, velocity, and IMU biases are updated through the EKF process. Through experiments with the Newer College dataset, we demonstrate that KLIO achieves precise trajectory tracking and mapping. Its accuracy is comparable to that of the state-of-the-art methods in both tightly- and loosely-coupled methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com