Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Refutation of the Pach-Tardos Conjecture for 0-1 Matrices (2407.02638v1)

Published 2 Jul 2024 in math.CO and cs.DM

Abstract: The theory of forbidden 0-1 matrices generalizes Turan-style (bipartite) subgraph avoidance, Davenport-Schinzel theory, and Zarankiewicz-type problems, and has been influential in many areas, such as discrete and computational geometry, the analysis of self-adjusting data structures, and the development of the graph parameter twin width. The foremost open problems in this area is to resolve the Pach-Tardos conjecture from 2005, which states that if a forbidden pattern $P\in{0,1}{k\times l}$ is the bipartite incidence matrix of an acyclic graph (forest), then $\mathrm{Ex}(P,n) = O(n\log{C_P} n)$, where $C_P$ is a constant depending only on $P$. This conjecture has been confirmed on many small patterns, specifically all $P$ with weight at most 5, and all but two with weight 6. The main result of this paper is a clean refutation of the Pach-Tardos conjecture. Specifically, we prove that $\mathrm{Ex}(S_0,n),\mathrm{Ex}(S_1,n) \geq n2{\Omega(\sqrt{\log n})}$, where $S_0,S_1$ are the outstanding weight-6 patterns. We also prove sharp bounds on the entire class of alternating patterns $(P_t)$, specifically that for every $t\geq 2$, $\mathrm{Ex}(P_t,n)=\Theta(n(\log n/\log\log n)t)$. This is the first proof of an asymptotically sharp bound that is $\omega(n\log n)$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube