Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Towards More Realistic Extraction Attacks: An Adversarial Perspective (2407.02596v2)

Published 2 Jul 2024 in cs.CR, cs.CL, and cs.LG

Abstract: LLMs are prone to memorizing parts of their training data which makes them vulnerable to extraction attacks. Existing research often examines isolated setups--such as evaluating extraction risks from a single model or with a fixed prompt design. However, a real-world adversary could access models across various sizes and checkpoints, as well as exploit prompt sensitivity, resulting in a considerably larger attack surface than previously studied. In this paper, we revisit extraction attacks from an adversarial perspective, focusing on how to leverage the brittleness of LLMs and the multi-faceted access to the underlying data. We find significant churn in extraction trends, i.e., even unintuitive changes to the prompt, or targeting smaller models and earlier checkpoints, can extract distinct information. By combining information from multiple attacks, our adversary is able to increase the extraction risks by up to $2 \times$. Furthermore, even with mitigation strategies like data deduplication, we find the same escalation of extraction risks against a real-world adversary. We conclude with a set of case studies, including detecting pre-training data, copyright violations, and extracting personally identifiable information, showing how our more realistic adversary can outperform existing adversaries in the literature.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 6 tweets and received 15 likes.

Upgrade to Pro to view all of the tweets about this paper: