Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Stochastic Differential Equations models for Least-Squares Stochastic Gradient Descent (2407.02322v1)

Published 2 Jul 2024 in cs.LG and math.PR

Abstract: We study the dynamics of a continuous-time model of the Stochastic Gradient Descent (SGD) for the least-square problem. Indeed, pursuing the work of Li et al. (2019), we analyze Stochastic Differential Equations (SDEs) that model SGD either in the case of the training loss (finite samples) or the population one (online setting). A key qualitative feature of the dynamics is the existence of a perfect interpolator of the data, irrespective of the sample size. In both scenarios, we provide precise, non-asymptotic rates of convergence to the (possibly degenerate) stationary distribution. Additionally, we describe this asymptotic distribution, offering estimates of its mean, deviations from it, and a proof of the emergence of heavy-tails related to the step-size magnitude. Numerical simulations supporting our findings are also presented.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.