Graceful coloring is computationally hard (2407.02179v2)
Abstract: Given a (proper) vertex coloring $f$ of a graph $G$, say $f\colon V(G)\to \mathbb{N}$, the difference edge labelling induced by $f$ is a function $h\colon E(G)\to \mathbb{N}$ defined as $h(uv)=|f(u)-f(v)|$ for every edge $uv$ of $G$. A graceful coloring of $G$ is a vertex coloring $f$ of $G$ such that the difference edge labelling $h$ induced by $f$ is a (proper) edge coloring of $G$. A graceful coloring with range ${1,2,\dots,k}$ is called a graceful $k$-coloring. The least integer $k$ such that $G$ admits a graceful $k$-coloring is called the graceful chromatic number of $G$, denoted by $\chi_g(G)$. We prove that $\chi(G2)\leq \chi_g(G)\leq a(\chi(G2))$ for every graph $G$, where $a(n)$ denotes the $n$th term of the integer sequence A065825 in OEIS. We also prove that graceful coloring problem is NP-hard for planar bipartite graphs, regular graphs and 2-degenerate graphs. In particular, we show that for each $k\geq 5$, it is NP-complete to check whether a planar bipartite graph of maximum degree $k-2$ is graceful $k$-colorable. The complexity of checking whether a planar graph is graceful 4-colorable remains open.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.