Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

CGAP: Urban Region Representation Learning with Coarsened Graph Attention Pooling (2407.02074v1)

Published 2 Jul 2024 in cs.SI

Abstract: The explosion of massive urban data recently has provided us with a valuable opportunity to gain deeper insights into urban regions and the daily lives of residents. Urban region representation learning emerges as a crucial realm for fulfilling this task. Among deep learning approaches, graph neural networks (GNNs) have shown promise, given that city elements can be naturally represented as nodes with various connections between them as edges. However, many existing GNN approaches encounter challenges such as over-smoothing and limitations in capturing information from nodes in other regions, resulting in the loss of crucial urban information and a decline in region representation performance. To address these challenges, we leverage urban graph structure information and introduce a hierarchical graph pooling process called Coarsened Graph Attention Pooling (CGAP). CGAP features local attention units to create coarsened intermediate graphs and global features. Additionally, by incorporating urban region graphs and global features into a global attention layer, we harness relational information to enhance representation effectiveness. Furthermore, CGAP integrates region attributes such as Points of Interest (POIs) and inter-regional contexts like human mobility, enabling the exploitation of multi-modal urban data for more comprehensive representation learning. Experiments on three downstream tasks related to the UN Sustainable Development Goals validate the effectiveness of region representations learned by our approach. Experimental results and analyses demonstrate that CGAP excels in various socioeconomic prediction tasks compared to competitive baselines.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.