Papers
Topics
Authors
Recent
2000 character limit reached

TabSketchFM: Sketch-based Tabular Representation Learning for Data Discovery over Data Lakes (2407.01619v3)

Published 28 Jun 2024 in cs.LG, cs.AI, and cs.DB

Abstract: Enterprises have a growing need to identify relevant tables in data lakes; e.g. tables that are unionable, joinable, or subsets of each other. Tabular neural models can be helpful for such data discovery tasks. In this paper, we present TabSketchFM, a neural tabular model for data discovery over data lakes. First, we propose novel pre-training: a sketch-based approach to enhance the effectiveness of data discovery in neural tabular models. Second, we finetune the pretrained model for identifying unionable, joinable, and subset table pairs and show significant improvement over previous tabular neural models. Third, we present a detailed ablation study to highlight which sketches are crucial for which tasks. Fourth, we use these finetuned models to perform table search; i.e., given a query table, find other tables in a corpus that are unionable, joinable, or that are subsets of the query. Our results demonstrate significant improvements in F1 scores for search compared to state-of-the-art techniques. Finally, we show significant transfer across datasets and tasks establishing that our model can generalize across different tasks and over different data lakes.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.