Papers
Topics
Authors
Recent
2000 character limit reached

A pseudo-outcome-based framework to analyze treatment heterogeneity in survival data using electronic health records (2407.01565v1)

Published 17 May 2024 in stat.ME and stat.AP

Abstract: An important aspect of precision medicine focuses on characterizing diverse responses to treatment due to unique patient characteristics, also known as heterogeneous treatment effects (HTE), and identifying beneficial subgroups with enhanced treatment effects. Estimating HTE with right-censored data in observational studies remains challenging. In this paper, we propose a pseudo-outcome-based framework for analyzing HTE in survival data, which includes a list of meta-learners for estimating HTE, a variable importance metric for identifying predictive variables to HTE, and a data-adaptive procedure to select subgroups with enhanced treatment effects. We evaluate the finite sample performance of the framework under various settings of observational studies. Furthermore, we applied the proposed methods to analyze the treatment heterogeneity of a Written Asthma Action Plan (WAAP) on time-to-ED (Emergency Department) return due to asthma exacerbation using a large asthma electronic health records dataset with visit records expanded from pre- to post-COVID-19 pandemic. We identified vulnerable subgroups of patients with poorer asthma outcomes but enhanced benefits from WAAP and characterized patient profiles. Our research provides valuable insights for healthcare providers on the strategic distribution of WAAP, particularly during disruptive public health crises, ultimately improving the management and control of pediatric asthma.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.