Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Unrolling Plug-and-Play Gradient Graph Laplacian Regularizer for Image Restoration (2407.01469v3)

Published 1 Jul 2024 in eess.IV

Abstract: Generic deep learning (DL) networks for image restoration like denoising and interpolation lack mathematical interpretability, require voluminous training data to tune a large parameter set, and are fragile in the face of covariate shift. To address these shortcomings, we build interpretable networks by unrolling variants of a graph-based optimization algorithm of different complexities. Specifically, for a general linear image formation model, we first formulate a convex quadratic programming (QP) problem with a new $\ell_2$-norm graph smoothness prior called gradient graph Laplacian regularizer (GGLR) that promotes piecewise planar (PWP) signal reconstruction. To solve the posed unconstrained QP problem, instead of computing a linear system solution straightforwardly, we introduce a variable number of auxiliary variables and correspondingly design a family of ADMM algorithms. We then unroll them into variable-complexity feed-forward networks, amenable to parameter tuning via back-propagation. More complex unrolled networks require more labeled data to train more parameters, but have better overall performance. The unrolled networks have periodic insertions of a graph learning module, akin to a self-attention mechanism in a transformer architecture, to learn pairwise similarity structure inherent in data. Experimental results show that our unrolled networks perform competitively to generic DL networks in image restoration quality while using only a fraction of parameters, and demonstrate improved robustness to covariate shift.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: