Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Semantic Compositions Enhance Vision-Language Contrastive Learning (2407.01408v1)

Published 1 Jul 2024 in cs.CV, cs.AI, and cs.LG

Abstract: In the field of vision-language contrastive learning, models such as CLIP capitalize on matched image-caption pairs as positive examples and leverage within-batch non-matching pairs as negatives. This approach has led to remarkable outcomes in zero-shot image classification, cross-modal retrieval, and linear evaluation tasks. We show that the zero-shot classification and retrieval capabilities of CLIP-like models can be improved significantly through the introduction of semantically composite examples during pretraining. Inspired by CutMix in vision categorization, we create semantically composite image-caption pairs by merging elements from two distinct instances in the dataset via a novel procedure. Our method fuses the captions and blends 50% of each image to form a new composite sample. This simple technique (termed CLIP-C for CLIP Compositions), devoid of any additional computational overhead or increase in model parameters, significantly improves zero-shot image classification and cross-modal retrieval. The benefits of CLIP-C are particularly pronounced in settings with relatively limited pretraining data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube