Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

GalLoP: Learning Global and Local Prompts for Vision-Language Models (2407.01400v2)

Published 1 Jul 2024 in cs.CV

Abstract: Prompt learning has been widely adopted to efficiently adapt vision-LLMs (VLMs), e.g. CLIP, for few-shot image classification. Despite their success, most prompt learning methods trade-off between classification accuracy and robustness, e.g. in domain generalization or out-of-distribution (OOD) detection. In this work, we introduce Global-Local Prompts (GalLoP), a new prompt learning method that learns multiple diverse prompts leveraging both global and local visual features. The training of the local prompts relies on local features with an enhanced vision-text alignment. To focus only on pertinent features, this local alignment is coupled with a sparsity strategy in the selection of the local features. We enforce diversity on the set of prompts using a new ``prompt dropout'' technique and a multiscale strategy on the local prompts. GalLoP outperforms previous prompt learning methods on accuracy on eleven datasets in different few shots settings and with various backbones. Furthermore, GalLoP shows strong robustness performances in both domain generalization and OOD detection, even outperforming dedicated OOD detection methods. Code and instructions to reproduce our results: https://github.com/MarcLafon/gallop.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.