Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

EMIF: Evidence-aware Multi-source Information Fusion Network for Explainable Fake News Detection (2407.01213v1)

Published 1 Jul 2024 in cs.SI

Abstract: Extensive research on automatic fake news detection has been conducted due to the significant detrimental effects of fake news proliferation. Most existing approaches rely on a single source of evidence, such as comments or relevant news, to derive explanatory evidence for decision-making, demonstrating exceptional performance. However, their single evidence source suffers from two critical drawbacks: (i) noise abundance, and (ii) resilience deficiency. Inspired by the natural process of fake news identification, we propose an Evidence-aware Multi-source Information Fusion (EMIF) network that jointly leverages user comments and relevant news to make precise decision and excavate reliable evidence. To accomplish this, we initially construct a co-attention network to capture general semantic conflicts between comments and original news. Meanwhile, a divergence selection module is employed to identify the top-K relevant news articles with content that deviates the most from the original news, which ensures the acquisition of multiple evidence with higher objectivity. Finally, we utilize an inconsistency loss function within the evidence fusion layer to strengthen the consistency of two types of evidence, both negating the authenticity of the same news. Extensive experiments and ablation studies on real-world dataset FibVID show the effectiveness of our proposed model. Notably, EMIF shows remarkable robustness even in scenarios where a particular source of information is inadequate.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.