Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep Domain Specialisation for single-model multi-domain learning to rank (2407.01069v1)

Published 1 Jul 2024 in cs.IR

Abstract: Information Retrieval (IR) practitioners often train separate ranking models for different domains (geographic regions, languages, stores, websites,...) as it is believed that exclusively training on in-domain data yields the best performance when sufficient data is available. Despite their performance gains, training multiple models comes at a higher cost to train, maintain and update compared to having only a single model responsible for all domains. Our work explores consolidated ranking models that serve multiple domains. Specifically, we propose a novel architecture of Deep Domain Specialisation (DDS) to consolidate multiple domains into a single model. We compare our proposal against Deep Domain Adaptation (DDA) and a set of baseline for multi-domain models. In our experiments, DDS performed the best overall while requiring fewer parameters per domain as other baselines. We show the efficacy of our method both with offline experimentation and on a large-scale online experiment on Amazon customer traffic.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.