Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Heterogeneous Graph-based Framework with Disentangled Representations Learning for Multi-target Cross Domain Recommendation (2407.00909v2)

Published 1 Jul 2024 in cs.IR and cs.CV

Abstract: CDR (Cross-Domain Recommendation), i.e., leveraging information from multiple domains, is a critical solution to data sparsity problem in recommendation system. The majority of previous research either focused on single-target CDR (STCDR) by utilizing data from the source domains to improve the model's performance on the target domain, or applied dual-target CDR (DTCDR) by integrating data from the source and target domains. In addition, multi-target CDR (MTCDR) is a generalization of DTCDR, which is able to capture the link among different domains. In this paper we present HGDR (Heterogeneous Graph-based Framework with Disentangled Representations Learning), an end-to-end heterogeneous network architecture where graph convolutional layers are applied to model relations among different domains, meanwhile utilizes the idea of disentangling representation for domain-shared and domain-specifc information. First, a shared heterogeneous graph is generated by gathering users and items from several domains without any further side information. Second, we use HGDR to compute disentangled representations for users and items in all domains. Experiments on real-world datasets and online A/B tests prove that our proposed model can transmit information among domains effectively and reach the SOTA performance. The code can be found here: https://github.com/NetEase-Media/HGCDR.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com