Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Macroeconomic Forecasting with Large Language Models (2407.00890v3)

Published 1 Jul 2024 in econ.EM, cs.CL, and cs.LG

Abstract: This paper presents a comparative analysis evaluating the accuracy of LLMs against traditional macro time series forecasting approaches. In recent times, LLMs have surged in popularity for forecasting due to their ability to capture intricate patterns in data and quickly adapt across very different domains. However, their effectiveness in forecasting macroeconomic time series data compared to conventional methods remains an area of interest. To address this, we conduct a rigorous evaluation of LLMs against traditional macro forecasting methods, using as common ground the FRED-MD database. Our findings provide valuable insights into the strengths and limitations of LLMs in forecasting macroeconomic time series, shedding light on their applicability in real-world scenarios

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: