Papers
Topics
Authors
Recent
2000 character limit reached

SAFE: a SAR Feature Extractor based on self-supervised learning and masked Siamese ViTs (2407.00851v1)

Published 30 Jun 2024 in cs.CV and eess.IV

Abstract: Due to its all-weather and day-and-night capabilities, Synthetic Aperture Radar imagery is essential for various applications such as disaster management, earth monitoring, change detection and target recognition. However, the scarcity of labeled SAR data limits the performance of most deep learning algorithms. To address this issue, we propose a novel self-supervised learning framework based on masked Siamese Vision Transformers to create a General SAR Feature Extractor coined SAFE. Our method leverages contrastive learning principles to train a model on unlabeled SAR data, extracting robust and generalizable features. SAFE is applicable across multiple SAR acquisition modes and resolutions. We introduce tailored data augmentation techniques specific to SAR imagery, such as sub-aperture decomposition and despeckling. Comprehensive evaluations on various downstream tasks, including few-shot classification, segmentation, visualization, and pattern detection, demonstrate the effectiveness and versatility of the proposed approach. Our network competes with or surpasses other state-of-the-art methods in few-shot classification and segmentation tasks, even without being trained on the sensors used for the evaluation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.