Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DP-MLM: Differentially Private Text Rewriting Using Masked Language Models (2407.00637v1)

Published 30 Jun 2024 in cs.CL

Abstract: The task of text privatization using Differential Privacy has recently taken the form of $\textit{text rewriting}$, in which an input text is obfuscated via the use of generative (large) LLMs. While these methods have shown promising results in the ability to preserve privacy, these methods rely on autoregressive models which lack a mechanism to contextualize the private rewriting process. In response to this, we propose $\textbf{DP-MLM}$, a new method for differentially private text rewriting based on leveraging masked LLMs (MLMs) to rewrite text in a semantically similar $\textit{and}$ obfuscated manner. We accomplish this with a simple contextualization technique, whereby we rewrite a text one token at a time. We find that utilizing encoder-only MLMs provides better utility preservation at lower $\varepsilon$ levels, as compared to previous methods relying on larger models with a decoder. In addition, MLMs allow for greater customization of the rewriting mechanism, as opposed to generative approaches. We make the code for $\textbf{DP-MLM}$ public and reusable, found at https://github.com/sjmeis/DPMLM .

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.