Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Linear Programming Enhanced Genetic Algorithm for Hyperparameter Tuning in Machine Learning (2407.00613v1)

Published 30 Jun 2024 in cs.LG and cs.NE

Abstract: In this paper, we formulate the hyperparameter tuning problem in machine learning as a bilevel program. The bilevel program is solved using a micro genetic algorithm that is enhanced with a linear program. While the genetic algorithm searches over discrete hyperparameters, the linear program enhancement allows hyper local search over continuous hyperparameters. The major contribution in this paper is the formulation of a linear program that supports fast search over continuous hyperparameters, and can be integrated with any hyperparameter search technique. It can also be applied directly on any trained machine learning or deep learning model for the purpose of fine-tuning. We test the performance of the proposed approach on two datasets, MNIST and CIFAR-10. Our results clearly demonstrate that using the linear program enhancement offers significant promise when incorporated with any population-based approach for hyperparameter tuning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: