Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Language-Guided Object-Centric Diffusion Policy for Generalizable and Collision-Aware Robotic Manipulation (2407.00451v3)

Published 29 Jun 2024 in cs.RO

Abstract: Learning from demonstrations faces challenges in generalizing beyond the training data and often lacks collision awareness. This paper introduces Lan-o3dp, a language-guided object-centric diffusion policy framework that can adapt to unseen situations such as cluttered scenes, shifting camera views, and ambiguous similar objects while offering training-free collision avoidance and achieving a high success rate with few demonstrations. We train a diffusion model conditioned on 3D point clouds of task-relevant objects to predict the robot's end-effector trajectories, enabling it to complete the tasks. During inference, we incorporate cost optimization into denoising steps to guide the generated trajectory to be collision-free. We leverage open-set segmentation to obtain the 3D point clouds of related objects. We use a LLM to identify the target objects and possible obstacles by interpreting the user's natural language instructions. To effectively guide the conditional diffusion model using a time-independent cost function, we proposed a novel guided generation mechanism based on the estimated clean trajectories. In the simulation, we showed that diffusion policy based on the object-centric 3D representation achieves a much higher success rate (68.7%) compared to baselines with simple 2D (39.3%) and 3D scene (43.6%) representations across 21 challenging RLBench tasks with only 40 demonstrations. In real-world experiments, we extensively evaluated the generalization in various unseen situations and validated the effectiveness of the proposed zero-shot cost-guided collision avoidance.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com