Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Medical Knowledge Integration into Reinforcement Learning Algorithms for Dynamic Treatment Regimes (2407.00364v2)

Published 29 Jun 2024 in stat.ME and stat.ML

Abstract: The goal of precision medicine is to provide individualized treatment at each stage of chronic diseases, a concept formalized by Dynamic Treatment Regimes (DTR). These regimes adapt treatment strategies based on decision rules learned from clinical data to enhance therapeutic effectiveness. Reinforcement Learning (RL) algorithms allow to determine these decision rules conditioned by individual patient data and their medical history. The integration of medical expertise into these models makes possible to increase confidence in treatment recommendations and facilitate the adoption of this approach by healthcare professionals and patients. In this work, we examine the mathematical foundations of RL, contextualize its application in the field of DTR, and present an overview of methods to improve its effectiveness by integrating medical expertise.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.