Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Interior Point Methods for Structured Quantum Relative Entropy Optimization Problems (2407.00241v3)

Published 28 Jun 2024 in quant-ph, cs.IT, math.IT, and math.OC

Abstract: Quantum relative entropy optimization refers to a class of convex problems in which a linear functional is minimized over an affine section of the epigraph of the quantum relative entropy function. Recently, the self-concordance of a natural barrier function was proved for this set, and various implementations of interior-point methods have been made available to solve this class of optimization problems. In this paper, we show how common structures arising from applications in quantum information theory can be exploited to improve the efficiency of solving quantum relative entropy optimization problems using interior-point methods. First, we show that the natural barrier function for the epigraph of the quantum relative entropy composed with positive linear operators is self-concordant, even when these linear operators map to singular matrices. Compared to modelling problems using the full quantum relative entropy cone, this allows us to remove redundant log-determinant expressions from the barrier function and reduce the overall barrier parameter. Second, we show how certain slices of the quantum relative entropy cone exhibit useful properties which should be exploited whenever possible to perform certain key steps of interior-point methods more efficiently. We demonstrate how these methods can be applied to applications in quantum information theory, including quantifying quantum key rates, quantum rate-distortion functions, quantum channel capacities, and the ground state energy of Hamiltonians. Our numerical results show that these techniques improve computation times by up to several orders of magnitude, and allow previously intractable problems to be solved.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube