Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Interior Point Methods for Structured Quantum Relative Entropy Optimization Problems (2407.00241v3)

Published 28 Jun 2024 in quant-ph, cs.IT, math.IT, and math.OC

Abstract: Quantum relative entropy optimization refers to a class of convex problems in which a linear functional is minimized over an affine section of the epigraph of the quantum relative entropy function. Recently, the self-concordance of a natural barrier function was proved for this set, and various implementations of interior-point methods have been made available to solve this class of optimization problems. In this paper, we show how common structures arising from applications in quantum information theory can be exploited to improve the efficiency of solving quantum relative entropy optimization problems using interior-point methods. First, we show that the natural barrier function for the epigraph of the quantum relative entropy composed with positive linear operators is self-concordant, even when these linear operators map to singular matrices. Compared to modelling problems using the full quantum relative entropy cone, this allows us to remove redundant log-determinant expressions from the barrier function and reduce the overall barrier parameter. Second, we show how certain slices of the quantum relative entropy cone exhibit useful properties which should be exploited whenever possible to perform certain key steps of interior-point methods more efficiently. We demonstrate how these methods can be applied to applications in quantum information theory, including quantifying quantum key rates, quantum rate-distortion functions, quantum channel capacities, and the ground state energy of Hamiltonians. Our numerical results show that these techniques improve computation times by up to several orders of magnitude, and allow previously intractable problems to be solved.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: