Papers
Topics
Authors
Recent
2000 character limit reached

Large-scale, Independent and Comprehensive study of the power of LLMs for test case generation (2407.00225v2)

Published 28 Jun 2024 in cs.SE

Abstract: Unit testing, crucial for ensuring the reliability of code modules, such as classes and methods, is often overlooked by developers due to time constraints. Automated test generation techniques have emerged to address this, but they frequently lack readability and require significant developer intervention. LLMs, such as GPT and Mistral, have shown promise in software engineering tasks, including test generation, but their overall effectiveness remains unclear. This study presents an extensive investigation of LLMs, evaluating the effectiveness of four models and five prompt engineering techniques for unit test generation. We analyze 216 300 tests generated by the selected advanced instruct-tuned LLMs for 690 Java classes collected from diverse datasets. Our evaluation considers correctness, understandability, coverage, and test smell detection in the generated tests, comparing them to a widely used automated testing tool, EvoSuite. While LLMs demonstrate potential, improvements in test quality particularly in reducing common test smells are necessary. This study highlights the strengths and limitations of LLM-generated tests compared to traditional methods, paving the way for further research on LLMs in test automation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.