Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine learning meets mass spectrometry: a focused perspective (2407.00117v1)

Published 27 Jun 2024 in physics.chem-ph, cs.AI, and cs.LG

Abstract: Mass spectrometry is a widely used method to study molecules and processes in medicine, life sciences, chemistry, catalysis, and industrial product quality control, among many other applications. One of the main features of some mass spectrometry techniques is the extensive level of characterization (especially when coupled with chromatography and ion mobility methods, or a part of tandem mass spectrometry experiment) and a large amount of generated data per measurement. Terabyte scales can be easily reached with mass spectrometry studies. Consequently, mass spectrometry has faced the challenge of a high level of data disappearance. Researchers often neglect and then altogether lose access to the rich information mass spectrometry experiments could provide. With the development of machine learning methods, the opportunity arises to unlock the potential of these data, enabling previously inaccessible discoveries. The present perspective highlights reevaluation of mass spectrometry data analysis in the new generation of methods and describes significant challenges in the field, particularly related to problems involving the use of electrospray ionization. We argue that further applications of machine learning raise new requirements for instrumentation (increasing throughput and information density, decreasing pricing, and making more automation-friendly software), and once met, the field may experience significant transformation.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com