Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Secure Outsourced Decryption for FHE-based Privacy-preserving Cloud Computing (2406.19964v2)

Published 28 Jun 2024 in cs.CR

Abstract: The demand for processing vast volumes of data has surged dramatically due to the advancement of machine learning technology. Large-scale data processing necessitates substantial computational resources, prompting individuals and enterprises to turn to cloud services. Accompanying this trend is a growing concern regarding data leakage and misuse. Homomorphic encryption (HE) is one solution for safeguarding data privacy, enabling encrypted data to be processed securely in the cloud. However, the encryption and decryption routines of some HE schemes require considerable computational resources, presenting non-trivial work for clients. In this paper, we propose an outsourced decryption protocol for the prevailing RLWE-based fully homomorphic encryption schemes. The protocol splits the original decryption into two routines, with the computationally intensive part executed remotely by the cloud. Its security relies on an invariant of the NTRU-search problem with a newly designed blinding key distribution. Cryptographic analyses are conducted to configure protocol parameters across varying security levels. Our experiments demonstrate that the proposed protocol achieves up to a $67\%$ acceleration in the client's local decryption, accompanied by a $50\%$ reduction in space usage.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.