Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving Token Gradient Conflict in Mixture-of-Experts for Large Vision-Language Model (2406.19905v3)

Published 28 Jun 2024 in cs.CV

Abstract: The Mixture-of-Experts (MoE) has gained increasing attention in studying Large Vision-LLMs (LVLMs). It uses a sparse model to replace the dense model, achieving comparable performance while activating fewer parameters during inference, thus significantly reducing the inference cost. Existing MoE methods in LVLM encourage different experts to specialize in different tokens, and they usually employ a router to predict the routing of each token. However, the router is not optimized concerning distinct parameter optimization directions generated from tokens within an expert. This may lead to severe interference between tokens within an expert. To address this problem, we propose to use the token-level gradient analysis to Solving Token Gradient Conflict (STGC) in this paper. Specifically, we first use token-level gradients to identify conflicting tokens in experts. After that, we add a regularization loss tailored to encourage conflicting tokens routing from their current experts to other experts, for reducing interference between tokens within an expert. Our method can serve as a plug-in for diverse LVLM methods, and extensive experimental results demonstrate its effectiveness. The code will be publicly available at https://github.com/longrongyang/STGC.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com