Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

NLPerturbator: Studying the Robustness of Code LLMs to Natural Language Variations (2406.19783v1)

Published 28 Jun 2024 in cs.SE and cs.CL

Abstract: LLMs achieve promising results in code generation based on a given natural language description. They have been integrated into open-source projects and commercial products to facilitate daily coding activities. The natural language description in the prompt is crucial for LLMs to comprehend users' requirements. Prior studies uncover that LLMs are sensitive to the changes in the prompts, including slight changes that look inconspicuous. However, the natural language descriptions often vary in real-world scenarios (e.g., different formats, grammar, and wording). Prior studies on the robustness of LLMs are often based on random perturbations and such perturbations may not actually happen. In this paper, we conduct a comprehensive study to investigate how are code LLMs robust to variations of natural language description in real-world scenarios. We summarize 18 categories of perturbations of natural language and 3 combinations of co-occurred categories based on our literature review and an online survey with practitioners. We propose an automated framework, NLPerturbator, which can perform perturbations of each category given a set of prompts. Through a series of experiments on code generation using six code LLMs, we find that the perturbed prompts can decrease the performance of code generation by a considerable margin (e.g., up to 21.2%, and 4.8% to 6.1% on average). Our study highlights the importance of enhancing the robustness of LLMs to real-world variations in the prompts, as well as the essentiality of attentively constructing the prompts.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.