Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Exact Bayesian Gaussian Cox Processes Using Random Integral (2406.19722v1)

Published 28 Jun 2024 in stat.ME, stat.CO, and stat.ML

Abstract: A Gaussian Cox process is a popular model for point process data, in which the intensity function is a transformation of a Gaussian process. Posterior inference of this intensity function involves an intractable integral (i.e., the cumulative intensity function) in the likelihood resulting in doubly intractable posterior distribution. Here, we propose a nonparametric Bayesian approach for estimating the intensity function of an inhomogeneous Poisson process without reliance on large data augmentation or approximations of the likelihood function. We propose to jointly model the intensity and the cumulative intensity function as a transformed Gaussian process, allowing us to directly bypass the need of approximating the cumulative intensity function in the likelihood. We propose an exact MCMC sampler for posterior inference and evaluate its performance on simulated data. We demonstrate the utility of our method in three real-world scenarios including temporal and spatial event data, as well as aggregated time count data collected at multiple resolutions. Finally, we discuss extensions of our proposed method to other point processes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets