Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

VarteX: Enhancing Weather Forecast through Distributed Variable Representation (2406.19615v1)

Published 28 Jun 2024 in cs.LG and physics.ao-ph

Abstract: Weather forecasting is essential for various human activities. Recent data-driven models have outperformed numerical weather prediction by utilizing deep learning in forecasting performance. However, challenges remain in efficiently handling multiple meteorological variables. This study proposes a new variable aggregation scheme and an efficient learning framework for that challenge. Experiments show that VarteX outperforms the conventional model in forecast performance, requiring significantly fewer parameters and resources. The effectiveness of learning through multiple aggregations and regional split training is demonstrated, enabling more efficient and accurate deep learning-based weather forecasting.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com