Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Differentiable Quadratic Optimization For The Maximum Independent Set Problem (2406.19532v7)

Published 27 Jun 2024 in cs.DM and cs.LG

Abstract: Combinatorial Optimization (CO) addresses many important problems, including the challenging Maximum Independent Set (MIS) problem. Alongside exact and heuristic solvers, differentiable approaches have emerged, often using continuous relaxations of ReLU-based or quadratic objectives. Noting that an MIS in a graph is a Maximum Clique (MC) in its complement, we propose a new quadratic formulation for MIS by incorporating an MC term, improving convergence and exploration. We show that every maximal independent set corresponds to a local minimizer, derive conditions with respect to the MIS size, and characterize stationary points. To tackle the non-convexity of the objective, we propose optimizing several initializations in parallel using momentum-based gradient descent, complemented by an efficient MIS checking criterion derived from our theory. We dub our method as parallelized Clique-Informed Quadratic Optimization for MIS (pCQO-MIS). Our experimental results demonstrate the effectiveness of the proposed method compared to exact, heuristic, sampling, and data-centric approaches. Notably, our method avoids the out-of-distribution tuning and reliance on (un)labeled data required by data-centric methods, while achieving superior MIS sizes and competitive runtime relative to their inference time. Additionally, a key advantage of pCQO-MIS is that, unlike exact and heuristic solvers, the runtime scales only with the number of nodes in the graph, not the number of edges. Our code is available at the GitHub repository: https://github.com/ledenmat/pCQO-mis-benchmark/tree/refactor.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube