Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Online sorting and online TSP: randomized, stochastic, and high-dimensional (2406.19257v1)

Published 27 Jun 2024 in cs.DS and cs.CG

Abstract: In the online sorting problem, $n$ items are revealed one by one and have to be placed (immediately and irrevocably) into empty cells of a size-$n$ array. The goal is to minimize the sum of absolute differences between items in consecutive cells. This natural problem was recently introduced by Aamand, Abrahamsen, Beretta, and Kleist (SODA 2023) as a tool in their study of online geometric packing problems. They showed that when the items are reals from the interval $[0,1]$ a competitive ratio of $O(\sqrt{n})$ is achievable, and no deterministic algorithm can improve this ratio asymptotically. In this paper, we extend and generalize the study of online sorting in three directions: - randomized: we settle the open question of Aamand et al. by showing that the $O(\sqrt{n})$ competitive ratio for the online sorting of reals cannot be improved even with the use of randomness; - stochastic: we consider inputs consisting of $n$ samples drawn uniformly at random from an interval, and give an algorithm with an improved competitive ratio of $\widetilde{O}(n{1/4})$. The result reveals connections between online sorting and the design of efficient hash tables; - high-dimensional: we show that $\widetilde{O}(\sqrt{n})$-competitive online sorting is possible even for items from $\mathbb{R}d$, for arbitrary fixed $d$, in an adversarial model. This can be viewed as an online variant of the classical TSP problem where tasks (cities to visit) are revealed one by one and the salesperson assigns each task (immediately and irrevocably) to its timeslot. Along the way, we also show a tight $O(\log{n})$-competitiveness result for uniform metrics, i.e., where items are of different types and the goal is to order them so as to minimize the number of switches between consecutive items of different types.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.