Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Annotation Errors and NER: A Study with OntoNotes 5.0 (2406.19172v1)

Published 27 Jun 2024 in cs.CL

Abstract: Named Entity Recognition (NER) is a well-studied problem in NLP. However, there is much less focus on studying NER datasets, compared to developing new NER models. In this paper, we employed three simple techniques to detect annotation errors in the OntoNotes 5.0 corpus for English NER, which is the largest available NER corpus for English. Our techniques corrected ~10% of the sentences in train/dev/test data. In terms of entity mentions, we corrected the span and/or type of ~8% of mentions in the dataset, while adding/deleting/splitting/merging a few more. These are large numbers of changes, considering the size of OntoNotes. We used three NER libraries to train, evaluate and compare the models trained with the original and the re-annotated datasets, which showed an average improvement of 1.23% in overall F-scores, with large (>10%) improvements for some of the entity types. While our annotation error detection methods are not exhaustive and there is some manual annotation effort involved, they are largely language agnostic and can be employed with other NER datasets, and other sequence labelling tasks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.