Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Quantitative Strong Laws of Large Numbers (2406.19166v1)

Published 27 Jun 2024 in math.PR

Abstract: Using proof-theoretic methods in the style of proof mining, we give novel computationally effective limit theorems for the convergence of the Cesaro-means of certain sequences of random variables. These results are intimately related to various Strong Laws of Large Numbers and, in that way, allow for the extraction of quantitative versions of many of these results. In particular, we produce optimal polynomial bounds in the case of pairwise independent random variables with uniformly bounded variance, improving on known results; furthermore, we obtain a new Baum-Katz type result for this class of random variables. Lastly, we are able to provide a fully quantitative version of a recent result of Chen and Sung that encompasses many limit theorems in the Strong Laws of Large Numbers literature.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com