Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Quantitative Strong Laws of Large Numbers (2406.19166v1)

Published 27 Jun 2024 in math.PR

Abstract: Using proof-theoretic methods in the style of proof mining, we give novel computationally effective limit theorems for the convergence of the Cesaro-means of certain sequences of random variables. These results are intimately related to various Strong Laws of Large Numbers and, in that way, allow for the extraction of quantitative versions of many of these results. In particular, we produce optimal polynomial bounds in the case of pairwise independent random variables with uniformly bounded variance, improving on known results; furthermore, we obtain a new Baum-Katz type result for this class of random variables. Lastly, we are able to provide a fully quantitative version of a recent result of Chen and Sung that encompasses many limit theorems in the Strong Laws of Large Numbers literature.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: